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Abstract. The properties of a phase-locked cavity are investigated using special relativity. 
Some useful formulae are derived and Compton back-scatter is explained. The paper 
concludes with tentative suggestions for the application of the principles to other 
phenomena. 

1. Introduction 

In a recent paper Jennison and Drinkwater (1977) gave a new account of the origin of 
inertia in which they derived Newton’s laws from the properties of radiation trapped 
in a phase-locked cavity. They investigated the effect of external electromagnetic 
radiation falling upon the outer wall of a lossless cavity. The force on the wall was 
found to be initially velocity dependent but the Doppler-shifted radiation reflected 
from it to the wall at the far end of the cavity caused that end also to be pushed and to 
reflect back radiation less energetic than that originally in the cavity. If the motive 
force was continued until this weaker radiation returned to the original motive wall, 
the wall was pulled by the radiation and if the external radiation was then removed the 
whole cavity continued moving at the velocity which it had attained after the 
completion of this feedback cycle. Jennison and Drinkwater showed that this velocity 
was approximately twice the velocity at which the motive wall was originally pushed 
and that, if the application of the motive force was continued, the system would ride 
up a ‘staircase’ of velocity. Upon removal of the motive force the system continued to 
move at the velocity of the last complete quantised state. The units of proper length 
and proper time defined by this system were conserved and invariant between each 
quantised velocity state, justifying the assumption built into the framework of both 
special and general relativity. 

The derivation of Newton’s laws required only a first-order treatment in view of 
the magnitude of the primary effect and, although an elementary discussion of the 
quantisation phenomenon was given, this again was treated at first order in v/c. 
Furthermore the model of a cavity used in the derivation of Newton’s laws was clearly 
taken as a basis for general illustration of the first-order inertial principle and it was 
not intended to be a necessary condition that the system should be bounded by 
macroscopic charged plates. All that is required for a phase-locked cavity is some 
means of retaining the radiation in a small region of space. The analysis of the 
standing-wave system then gives the quantised inertial properties of the whole system. 
Thus it is to be expected that a fundamental particle will comply with these conditions 
but it will be shown that there may well be only a single node and the binding of the 
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energy may result simply from the spinning of the standing-wave system. The model 
of an electron mentioned in the conclusions of the Jennison and Drinkwater paper was 
a cavity of this type. 

The analysis in this paper includes relativistic effects. It does not presuppose any 
particular form of binding mechanism for the radiation in the cavity and it will become 
clear from the analysis that the binding must be accommodated by a suitable 
configuration of the wave system for no other energy sources are available. 

A large number of variations of the basic model are available. Figure 1 shows a set 
of basic modes plotted rectilinearly and is intended only to simplify discussion of more 
practical models. A final analysis of a particular particle must obviously include the 
effects of spin and the three-dimensional distribution of the wave fields which may 
very well be such as to give rise to re-entry of the internal wave system such that a 
standing wave'to one side of the node loops around and appears also as the balancing 
standing wave on the other side of the node (e.g. figure 2). In order to assess whether 
or not such a system is a likely model, the present paper will include, in addition to the 
simple cavity, the analysis applicable to simple push-pull systems such as the family 
including open-ended half-wave systems with a central node. 

The following symbolism will be used: v shall refer to frequency; A to amplitude; 
V and U to velocity (U being used where Su was used by Jennison and Drinkwater). 
An unprimed amplitude or frequency refers to incident radiation in the laboratory 
system; a single prime refers to radiation measured in the frame of the node; dauble 
and triple primes refer to reflected radiation in the laboratory system; the suffix 
indicates that the quantity is associated with the internal cavity system. 

2. Relativistic velocity relationships for a cavity 

For a physical account of this process, reference should be made to Jennison and 
Drinkwater (1977, p 171). 

Consider a simple double-noded cavity, such as that in figure l(a),  filled with 
radiation of frequency vo. The cavity is initially at rest in the laboratory. 

When the motive reflector element, A, is moved forward with velocity U relative to 
the laboratory, the internal frequency YO is received at the motive reflecting element at 
a frequency 

I 

It is then reflected in the laboratory system at the frequency 

v; = vb(-) 1 + u / c  112 = Y o ( - ) .  1 + v / c  
1 - u/c 1 - v / c  

This radiation moves forward to the reflecting element, B, (the following mirror 
element) on the right. This element must remain in equilibrium in its own frame still 
subject to the original restoring force. The following mirror element therefore moves 
at velocity V I  such that the frequency is restored to the original value. Hence 
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Figure 1. Some basic cavity modes which are discussed in this text. Rectilinear systems 
are depicted for simplicity, the real systems would be three-dimensional spinning 
configurations. 

therefore 

1 + u / c  1 + Vl/C 112 

-= ( 1  - V1/J 

The frequency reflected back by the following mirror, B, when referred to the 
laboratory system is 

24 =Yo( 1 - Vl/C ) 112 = Y o ( - ) .  1 - v / c  
1 + Vl/C 1 + v / c  

This frequency when received in the frame of the moving motive mirror, A, is 

d(-) 1 + v / c  112 =Yo(-) 1 - v / c  1/2 . 
1 - v / c  1 + v / c  

The effect of this radiation is to cause the motive mirror to move at velocity U 
relative to its frame of rest at the time. By the relativistic composition of velocities, 
the new velocity relative to the laboratory frame is then 

2 v  
v2 = 

1 + v 2 / c 2 '  

By substitution in equation (1)  it will be seen that V1 = V2 and this quantity will 
henceforth be referred to as V. Equation (2) is the rigorous expression for the final 
velocity after the completed acquisition of the first quantum in the process of momen- 
tum capture. It was expressed as 2Sv to the first order only in the paper by Jennison 
and Drinkwater. The velocity relationship between V and U appears to apply to 
phase-locked cavities of all types. In view of its central importance to the whole 
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analysis it is therefore useful and economical in later calculations to tabulate a number 
of equivalent forms (equation (3)). 

2v 
1 + v 2 / c 2  = 

1 - (1 - v 2 / c 2 ) ” 2  
VlC2 

U =  

1 + v / c  1 + v / c  1’2 

-=(& 
(1 - v2/c2)”2. 1 - v 2 / c 2  

1 + v 2 / c 2  
~- = 

In the following discussion it will be assumed that the motive force is provided 
from an incident wave train of sufficient duration to maintain one reflected excursion 
of the internal wave. The effect of much longer exposure to the incident radiation has 
been treated in Jennison and Drinkwater and will be mentioned again in the 
conclusion of this paper. 

The push-pull cavity configuration, in which the central node, when at rest, is 
balanced by the internal radiation from either side, has much to commend it and some 
of its properties will now be analysed. 

3. Intensity relationships for a push-pull cavity 

Many of the relationships for a cavity appear at first to be complicated for they are 
functions of velocity and, if the cavity is caused to move by the application of an 
external wave of laboratory frequency v and amplitude A the velocity is itself a 
function involving these parameters and the parameters of the cavity. Nevertheless 
three properties of the system can help in the solution of some of the problems. Firstly 
the overall action of the cavity is that it relativistically integrates increments of the 
velocity when the motivation is applied for an extended period. Secondly, it is possible 
to find certain relationships which are velocity independent although they are derived 
from parameters which are dependent upon the instantaneous velocity. Finally the 
various components of force at the node must be such that local equilibrium may be 
satisfied at all times. If the configuration of the particle gives rise to static electric and 
magnetic fields in the laboratory then these will couple to an applied electromagnetic 
field and it will vibrate in sympathy. 

Consider a push-pull cavity such as that in figure l(b).  When the cavity is at rest, 
radiation of frequency YOL and amplitude A0 reaches the central node from the left 
and radiation of identical frequency VOR and amplitude A. reaches the node from the 
right. The two radiation pressures on an element of the node are identical and the 
node is in equilibrium. Now apply from the left an external signal of frequency v and 
amplitude A in the laboratory. The element starts to move and the signal becomes v’ 
at the node. At the same time the cavity radiation on the left is doppler-shifted at the 
node to the value vbL and that on the right increases to vbR. Thus three signals fall on 
the same elenlent, two from the left and one from the right. For local equilibrium the 
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zero-frequency components must cancel at the node and therefore 

(A r ) 2  + (A bL)’ = (A bR)2 

which may be written: 

1 - v l c  2 1 + v / c  
( A ‘ ) ~  +A:  ~ -A0- - 

1 + v / c  1 - v / c  

whence by equation (3) 

or, in terms of A, 

Now 

1 - v/c 1’2 

1 + V I C  
A” = A( -) 

hence 

and therefore by equation ( 5 )  

A2 - (A“)’ = A:( 

Otherwise, from (4) 

and hence, at the node, since (A’)’ =AA” 

1 1 1  
(A”)2 A’ A;‘ 
---=- 

1529 

4. Spectral relationships 

The coupling of an external wave to an element of the node of a cavity produces a 
steady forward motion fully modulated by an approximately cosinusoidal motion of 
negative sign and double the signal frequency, in accordance with the classical appli- 
cation of radiation pressure. The motion does not therefore start with a jerk but 
commences smoothly from zero velocity. The effect of this motion is to frequency 
modulate the internal radiation in the cavity in a manner very similar to the process of 
parametric amplification in electronic systems. The motion is opposed by the change 
in the internal cavity radiation and this opposition has to agree not only for the mean 
value but also for the rate of change and therefore the periodicity of the signal. 
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Furthermore the frequency conversion is such that it is perfectly consistent with the 
required radiation in the cavity in its next quantised state when this radiation is 
referred to the laboratory system. In the proper frame of the node, on the other hand, 
the internal frequency reverts to its original proper value in the next quantised state if 
the external signal is removed. 

It was pointed out by Jennison (1977) that the simple double-noded cavity, such as 
that in figure l(a) presents problems with the symmetrical application of the recipro- 
city theorem to both nodes. The present analysis shows that problems also arise if one 
endeavours to associate the spectral relationships of a double-noded cavity with the 
experimentally observed properties of an electron. These problems do not arise 
however if the electron is modelled on the principle of a single-noded push-pull cavity, 
such as in figure l (b) .  A very simple treatment is available from elementary systems 
analysis. The spectrum of frequencies produced in the cavity when it is pushed can be 
simplified considerably if ubR - ubL = 2u ‘ .  Looking at this from the point of view of 
the mechanics it can be seen that to satisfy local equilibrium at an element of the 
reflective node, the rates of fluctuation of the radiation pressures from the separate 
wave systems inside and outside the cavity must agree. Then the difference frequency 
U;)R  - u ; ) ~  must equal the second harmonic of U’. Therefore 

U b R  - U b L  = 2u’.  (7 1 
The cavity frequencies ubR and ubL are related to the cavity rest frequency by the 
same instantaneous velocity v and so 

1 + u / c  1 - v / c  2v lc  
((1 - v 2 / c 2 ) 1 / 2 -  (1 - v2,c 

UbR - b’bL = U0 

hence 

This is the relativistic form of the equation 

SV 
U, = U0 - 

- 

C 

of Jennison and Drinkwater (1977, p 173), in which U, was used as the symbol for U’ 
and %was used for the velocity v in this account. 

Equations (3) and (8) are of considerable significance for the elucidation of 
quantum phenomena and the modelling of fundamental particles. This will now be 
illustrated by considering the behaviour of the electron in the Compton effect. 

5. Derivation of the Compton back-scatter energy equation for a push-pull cavity 

If U is the incident external radiation in the laboratory giving rise to U’ at the node and 
if U” is the corresponding reflected radiation in the laboratory, 

2 v l c  
y - y” = 

(1 - v2 /c2 )1 ’2 .  
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Therefore from equation (8) 

U - U" 2 v 2 / c 2  
U0 l - v 2 / c 2  

-- - 

and therefore from equation (3) 
1 

2 1 / 2 =  2 1 / 2 -  1 .  
U-U" - v V l c  

VO c (1 - v 2 / c  ) (1 - v 2 / c  ) 

Multiplying both sides by mac2 ,  the rest energy of the cavity derived in the paper by 
Jennison and Drinkwater (1977),  

moc 2 
2 

2 1/2-moc !!E(, - = 
U0 ( 1 -  v z / c  ) (9) 

But moc2 /uo  is a proper constant of a cavity formed from the annihilation frequency 
uo of the electron and has the same value as Planck's constant, h. (The expression may 
be written 2m0c2/vo if the frequency is specified as the pair production frequency as in 
Jennison and Drinkwater). Hence 

2 hu - hu" = 2 1/2-moc (1 - v 2 / c  ) 

which is the Compton back-scatter energy relationship. The expression on the right is 
the kinetic energy of a mass mo recoiling at velocity V and that on the left is the 
photon energy which is inelastically absorbed in the impact. 

6. Derivation of the momentum relationship for Compton back-scatter of an electron 

It is of interest to show that the equations also give the correct result for the quantised 
momentum. 

Thus from equation (8) 

and therefore from equation ( 3 )  

moc mo V - (U + U") = 
Yo (1  - v 2 / c 2 ) 1 / 2  

and therefore 

hu hu" mo V -+-= 
c c ( 1 - v 2 / c 2 ) " 2  

which is the correct quantum relationship for the momentum. 
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7.  Conclusions 

This paper has dealt with the previously unexplored problem of the process during the 
acquisition of a new quantum state by a free electron. It shows that this can come 
about entirely from the transfer function of the particle even when the applied 
radiation is an arbitrary classical electromagnetic wave, provided that it is applied for 
a time which exceeds the capture time of the cavity. If the radiation lasts somewhat 
longer, the excess will be re-radiated by reciprocity as explained by Jennison and 
Drinkwater. If the applied radiation lasts for approximately twice the time it may 
raise the particle to the next quantised velocity state but the second increment will be 
smaller, as the recoiling particle will receive radiation which is Doppler shifted by its 
own motion, Though this account has treated the case of a free electron there is no 
reason why similar principles should not be applied to electrons orbiting in a central 
field of electric force. 

A classical treatment of the angular relationships in the Compton effect has been 
given by Ashworth and Jennison (1974) in terms of the velocity V. The present paper 
shows how V is related to the velocity U and how this leads to a classical derivation of 
the quantised energy and momentum for the particular case of back-scatter. A full 
classical solution of the Compton effect should now be possible in terms of the velocity 
U. Ashworth has analysed Compton angular scattering in the context of reflection 
from a mirror moving at the mean velocity U and his results are entirely compatible 
with the concept of a phase-locked cavity. 

Ant L ode 

Anti node t 
Figure 2. One possible model of a single-noded re-entrant push-pull cavity. The phase of 
the wave reverses in synchronism with the rotation and thus the electric field vectors 
always point inwards (outwards for a cavity with reversed spin). The electromagnetic wave 
loops a n  itself, the electric field has a static radial component and the magnetic field has a 
dipole component through the centre. Combination with a similar system in quadrature 
(not shown) could produce a purely static, although spinning, field system in the labora- 
tory. The system is equivalent to a simple standing wave locked into a rotating frame. 
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The analysis in this paper provides some insight into the structure of the electron. 
The choice of basic cavity is reduced to that in figure 1(b )  in which the electric field 
vanishes at the centre where the magnetic field is the strongest. Figure l ( b )  is 
nevertheless only diagrammatic whereas the radiation must be trapped, three-dimen- 
sional, and spinning. A possible configuration satisfying these requirements is shown 
in figure 2. This configuration may have an associated orthogonal wave system and 
would appear in the laboratory as a localised monopolar divergence of electric field 
without a central infinity and with a magnetic dipole through the centre. The whole 
system spins and the field carries angular momentum which is a proper constant 
referred to the centre of the system in any inertial frame. 

The remaining basic configurations of figure 1 are of some interest. Figures l ( a )  
and l ( d )  have a maximum electric field at the centre and a spinning configuration with 
an axis through the centre presents severe difficulties with the central singularity. 
Figure l ( c )  could be spun about the central node and would appear to have no 
external electric field but it is not yet clear if the reciprocity property can be satisfied at 
the outer nodes unless they represent points on a continuous nodal surface spinning at 
the velocity of light. Figure l ( e )  can be spun about the centre and it again has an 
external electric field. It is somewhat tempting to identify the outer nodes with a 
‘hard’ surface unlike the ‘softer’ nature of the outer electric field and it is also 
interesting that the whole system in figure l ( e )  can be looked upon as having three 
constituent but inseparable parts. It is tempting to consider these parts as quarks, the 
whole corresponding to the proton. A self-contained, three-dimensional, spinning 
model of figure l ( e )  has not yet been propounded but the frequency for this mode to 
be trapped by a natural process will presumably differ from that applicable in figure 
1 (b  1. 
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